目次

SR-Can (スウェーデン)

評価結果

(SR-Canプロジェクト:2006年)



安全評価の結果はどのように示されるのですか…


SR-Can安全評価で行われている解析結果のうち、“処分場の安全性立証に求められる解析・評価”への対応として提示されているシナリオの評価結果を整理する。スウェーデンではリスク解析が求められているが、ここでは線量での評価結果を先に示し、その後リスク評価の結果を示す。


(1)「定置孔における移流条件」と「全面腐食によるキャニスタの破損」の組み合わせシナリオ の線量評価

緩衝材の浸食の結果として、処分孔内で移流条件が優勢となった場合に発生する、銅(キャニスタ)の腐食に起因する損傷。イオン強度が低い氷河融水によって、ベントナイト緩衝材がコロイド化して流出・浸食される。キャニスタが地下水と接触できるようになると、水に含まれる硫黄とメタン成分により、銅製アウターシェルの腐食が進行する。アウターシェルが腐食貫通した後、鋳鉄製インサートが腐食が進み、貫通すると核種放出に至る。

銅製アウターシェルの腐食: キャニスタの側面部分において、キャニスタの半周分が幅35cmの帯状にわたって均一に腐食する。

鋳鉄製インサートの腐食: 銅製アウターシェルが腐食貫通した後、インサート部が腐食貫通するまでの時間は、1,000年から10万年の間の三角形状分布で10万年にピークを持つと仮定している。このため線量評価の結果は、統計処理を行った後のものである。以下に示すFigure 12-14と12-15で示されている線量の経時変化は、1万回の個別計算(10,000 realisations)で得た値を平均したものである。

評価結果:フォルスマルクの場合


Figure 12-14

フォルスマルクに処分場を設置した場合の線量評価結果は、Figure 12-14に示されている。黒線(図中ではCase A)が「主要シナリオ」に相当、赤線(図中ではCase B)が「発生確率の低いシナリオ」に相当する。(いずれも、太線が地圏での核種移行を考慮した計算結果、細線は考慮していない計算結果である。)

評価結果:ラクセマルの場合


Figure 12-15

ラクセマルに処分場を設置した場合の線量評価結果は、Figure 12-15に示されている。


(2) キャニスタの剪断破壊が生じるシナリオ の線量評価

大規模な地震(例えば氷期サイクルの退氷期に発生する)によって引き起こされる、岩盤剪断運動にともなってキャニスタが損傷する。岩盤の剪断面がキャニスタと交差するように発生すると仮定し、銅製アウターシェルと鋳鉄製インサートが同時に損傷する。この損傷モードの発生確率は低いが、完全に排除することはできない。⇒ 「発生確率の低いシナリオ」としての想定

評価結果


Figure 10-51

キャニスタの剪断破壊が生じるシナリオの線量評価は、Figure 10-51に示されている。黒太線がフォルスマルク、赤太線がラクセマルについて評価した結果である。


(3) 将来の人間活動に関連するシナリオ の線量評価

SSI一般勧告(SSI FS 2005:5)によると、将来の人間活動に関して、処分場の損傷による放射線量を評価・算定する必要があり、侵入者自身が受ける影響を評価する必要はない。

SKB社はSR-Can安全評価においては、将来の人間活動の代表的ケースとして以下の3つを挙げている。ただし、SR-Can安全評価では、最初に挙げている「ボーリングによるキャニスタの貫通」ケースについてのみ、線量計算ケースを設定して評価結果を示しているにとどまっている。


Figure 12-18



Figure 12-19

「キャニスタを貫通するボーリング実施後における現場周辺での公衆被ばく」シナリオでは、放射線被ばくに至る2つの経路(汚染源)を考えている。それぞれの被ばく経路による線量評価結果を右に示す。

  1. キャニスタを貫通しているボーリング孔内に貯まった汚染水 → 飲用井戸として使用されて被ばくに至る
    Figure 12-18
  2. ボーリング作業時に発生した掘削くずが散乱した土壌汚染現場 → 農耕地として利用されて被ばくに至る
    Figure 12-19

いずれの評価でも、キャニスタを貫通するボーリングが実施される時期は、処分場の閉鎖後300年以降としている。



リスク基準の遵守の評価


Figure 13-2

SR-Can安全報告書では、フォルスマルクおよびラクセマルの年間個人リスクの総和は、Figure 13-2に示されている。